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%Given p(X) < oo, we want to show

l<p<r<oo = (fmp)’l’ < (fm’“)i.

To do this, we apply Holder’s Inequality, with F' = |f|P,G =1, P = 5 Q=57

gives
r=p

[1F61< 1Flslcle. — [117< ( /f)(/l)
— (fur) < (fur) e

Dividing both sides by (u(X ))% gives the desired result.
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We assume f; — f in LP. If p = oo then this obviously implies pointwise convergence a.e..
But for p < oo it is easy to construct examples for { f;} doesn’t converge pointwise anywhere.

For example, for 2" < j < 2"*! let f; be the characteristic function on [j gfn, j*;; Zn].

To show there is always a subsequence that converges pointwise a.e., we use the fact that
{f;} is Cauchy. This implies that, for any m € N, we can find an N, such that

G k2N = fi = filly < 3=

Choosing the N,, inductively, we can also ensure that {V,, },, is a strictly increasing sequence.
We show the subsequence {fy,, } converges a.e. to f. To do this, first consider

gn = Z ‘me+1 - me‘
m=1

Then .
g 9= Z |me+1 —me| .
m=1

Also, by Minkowski’s Inequality,

n

gnllo = <D Vi = fva]l, < 1
p

Z |me+1 - me|

m=1

Thus, by the Monotone Convergence Theorem (Theorem 19),

/gpzlim g <1<o0.

n—o0

It follows that g < oo a.e. That is, for almost every z, the series Y (fn,..,(z) — fv,.(2)) of
real numbers converges absolutely: this implies the series itself converges. Then

f=Fa 4D (@) = fr, ()

The mth partial sum is exactly fu,.,,. That is, fn,, — f a.e., which is exactly what we

wanted to show.



s
X is a topological space, and F C ©(X) contains the closed and open sets, and is
closed under countable unions and countable intersections. we want to show that F O B.
To do this, set

G={ACX:AcFand ~A€ F}.

Clearly G contains all closed sets (since the complements of the closed sets are the open sets,
which are in F). So, if we can show that G is a o-algebra then B C G C F.

By construction, G is closed under complements. To show G is closed under countable
unions, suppose {A,} is a sequence of sets in G: so, each A; and ~A; is in F. Then

U AjeF (since F is closed under countable unions),

o o
~ U A= ﬂ ~A;jeF (since F is closed under countable intersections) .
j=1

[oX

Thus G is closed under countable unions, as desired.

(ii) Let p be the Anything-Will-Do measure on X = {a, b}, and let X have the indiscrete
topology (so the only open sets are X and (), and thus these are the only Borel sets
as well). Then p is Borel regular, but A = {a} is not contained in a Borel set B with
(B~ A) =0. (The only possibility is B = X, and that doesn’t work).

(iii) Similar to the last example, let X = {a, b} be given the indiscrete topology, and let u
be the Anything-Is-Wonderful measure. p is again Borel regular, and now A = {a} is

p-measurable. But there is again no Borel B O A with u(B~A) = 0.



If i is Borel regular and A C X is measurable with 1(A) < oo then we want to show
p—l1A is Borel regular. By Theorem 35(b), we can choose a Borel B O A with u(B~A) = 0.
We know by Theorem 35(c) that B is Borel regular, so we just have show that B =
u_lA. For C C X we have

p1B(C) = u(BNC) < u(ANC)+u((B~A)NC) < p(ANC)+pu(B~A) = n(ANC) = p_IA(C).

[oX

s
X is a locally compact and separable metric space. We want to show that we can write
X =U,, Vs, where V,, is open and V,, is compact.

The other direction is trivial, and so we’re done.

Since X is separable, we have a countable dense subset Y = {y1,¥2,...}. We know that
around each y, there is a compact ball; we just have to be careful to choose these balls to
be reasonably large. (For example, taking the interval of radius 2% around the n’th rational
¢n € Q will not work in R). So, we set
(%) rn = 3 min (1,sup{r : B,(y,) is compact}) .

Setting V,, = B,, (y,) it is immediate that V,, is compact. (Note, this may not be true
without the min in the definition of r,). We just have to show that X = U,V,.

Considering x € X, we want to show z is in some V,,. We know that there is an r such
that B,(z) is compact. We can also assume that r < % (since closed subsets of a compact
set are compact, any smaller closed ball will still be compact). Next, since Y is dense in X,
we can find a y, with d(z,y,) < 5. But then E%r (y,) € B,.(x), and thus is compact. Then

by (), and since r < 2,

Ty 2

wl =

But then z € Bz (y,) C By, (yn) = V,..
o
(49 For i a measure on X and v a measure on Y, we define 1 x v:9(X x V) —R*:

px v(D) = inf {Z p(A;)v(B;) : A; C X p-measurable, BCY I/—measurable} DcX xY.
j=1



We want to show this is a measure. Only countable subadditivity is nontrivial. So, suppose
{D;}, is a sequence of subsets of X x Y. Fix € > 0, and for each D; let {A;;, x Bj;}i be a
covering by rectangles with measurable sides and such that

€
Z,u ]k MXV(DJ)—FE
Then {Aji X Bji}ix is a Coverlng of U; Dy, and so

o0

X v (U Dj) D> u(Ap)v(By) <) pxv(D)) +e

j=1 k=1 j=1

By the Thrilling e-Lemma, we're done.

[oX

%We want to prove "t = " x ™. Fix D C R™". Then

(

#™(D) = inf {Z : D C U , P; an open (m + n)—box}

L™ x LD 1nf{2$m Z"(B; DCUA x B;, A;CR™ B, CR"}

\ J=1

Note that any open (m + n)-box can be thought as an A; x B; with measurable sides. And,
it is immediate from Proposition 5 that

v(A; x Bj) = v(Ay) - v(Bj) = L™(4;) - £7(Bj)
It follows immediately that £™ x Z"(D) < £ (D).

We shall prove the reverse inequality for D bounded; the result then follows for general
D by continuity of regular measures (Theorem 35(a)). Fixing j, we choose suitable n > 0
and § > 0, and we cover A; and B; by collections of boxes { P} and {Q; }, such that

(ZU(PJ'H) ' (ZN%)) < (L™M(Aj) +n) - (L7(B)) +0) < L™(A)) - L7(B;)) + % .

k=1 =1

(We can find suitable n and ¢ because D is bounded, and thus A; and B; have finite measure).
This gives us a covering of D by (m + n)-boxes { P}, x Q]l}]kl, and again, v(Pj) - v(Qj) =
(P x Q). It follows that

ZL"(D) < i.i”m(Aj) - L"(B;) +e.
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By the Thrilling e-Lemma, we're done.

[oX

>E‘Sfﬁjlf A C X is Borel and B C Y is Borel then we want to show A x B is Borel. It is
enough to show A x Y and X x B are Borel, since the intersection of these two sets gives
the desired set. Define

F={CCX:CxY is Borel}.

Then F is easily shown to be a o-algebra. Also, F contains any open V C X (since V x Y
is open, and thus Borel). Thus, by definition of the Borel sets, F contains all Borel subsets
of X; in particular, A € F, and thus A x Y is Borel. Similarly if B C Y is Borel then X x B

is Borel. %\

(a) We want to show that if f is summable then f is o-finite. Fix j and let F,, = {x :
|f(z)] = 1/j}. Then Ej is measurable and [, |f[ > %,u(Ej), from which it follows that
U(E;) < oo. Thus, {z : f(x) # 0} = UE; is o-finite.

(b) Suppose X is o-finite, so X = UA; with A; measurable and ;1(A;) < co. Suppose f is
measurable and let £ = {z : f(x) # 0}. Then £ = U(E N A;) is a countable union of
sets of finite measure, and thus f is o-finite.

(c) Suppose X = UA; and Y = UBy, are o-finite, with all the A; and Bj, measurable, and
with each p(A;) < oo and v(By) < co. Then X x Y = U(A; x B;). And, by Theorem
42, each A; x By is pxv-measurable with uxv(A; x By) = u(A;) - v(By) < oo. Thus

X x Y is o-finite.

>E‘Syﬁj\i\/e want to prove Theorem 47, the Fubini-Tonelli Theorem.

(i) Suppose f: X x Y —R* is nonnegative and o-finite. Using Lemma 20, we can write

("') f= Z thAj hj >0, Aj o-finite.
j=1



Fix j. Then, by Lemma 46(i) for v-a.e. y € Y, the slice
(Aj)y ={r € X : (z,y) € 4;}

is p-measurable. Thus, for v-a.e. y € Y, the function

(%) T = X(ay), (®) = Xa,(z,y)

is p-measurable. Considering all j together, for v-a.e. y € Y every function given by
(%) is p-measurable. Thus, for v-a.e. y € Y, the function

€T +— ZthAj(-T,y) = f(xay)

Jj=1

is p-measurable. Integrating with the help of Lemma 46 (ii), (iii), and the Monotone
Convergence Theorem,

[ [ | avt) =3 n [ uapvis) =3 b nxviay),

Y X

On the other hand, Lemma 20 applies directly to () to give

/fduxz/:Zhj~,u><l/(Aj).

XXY J=1

This is exactly the result we want for nonnegative f.

(ii) For general o-finite f, we write f = f* — f~, and the desired result follows immediately

from the case for nonnegative f.
S
i

(a) We consider .Z on [0, 1] and jt counting measure on [0, 1]. We consider f = Xp where
D = {(z,z) : x € [0,1]}. Note that f is measurable, since D is closed and .Z x pi is
Borel (by Theorem 45). We then easily calculate

/

[ [ oenize | anw = [ odui) =o.

[0,1] [0,1] [0,1]

[ [ o | aze@ = [1aze@ -1,

\ [071} [071] [071}




Finally, we can show that
(%) /XDd.,?XMOZ.,E,”X,LLO(D):oo.

To see this, consider a covering {A; x B;} of D by rectangles (by Borel regularity we
don’t have to worry if the sides are measurable). We can also assume A; C B;, since
replacing A; by A; N B; covers the same points of D. But one of the A; must have
positive Lebesgue measure (since [0, 1] C |J; 4;), and then

g(Aj) >0 = Mo(B]) =00 — XX M[)(Aj X BJ) = 00.

Then (x) follows immediately from the definition of the product measure.

(b) We now consider f(x,y) = % with respect to £ on [0,1] in each variable. f

is Borel, and thus measurable, since it is continuous except at (0,1); and then f is
automatically o-finite, since .2 x Z([0,1] x [0,1]) =1 < co. Now, by antisymmetry

L [
=y =y
I = — % _dady = — ————dydx.
//(:r2+y2>2 o //(w2+y2>2 -
00 00

So, to show the two integrals are not equal, we just have to show I # 0. Letting
x = ytanu (for y > 0), we have

arctan( %)

1

2 2 2 2

e — tan“u — 1

[t [ g v v
T sectu

0 Y 0 Y

arctan( %)

1 1 arctan(%) 1
= / —(sin*u — cos®u) = [—— sin u cos u] = —
)Y y 0 y o+ 1
Integrating once more, we find I = —7 # 0.



% To show that 7" is a measure, the only issue is to prove countably subadditivity,
and the proof is identical to that for Lebesgue measure. Suppose A C U, A, and, for each k,
let {Cji} be a covering of Aj. Given € > 0, we can choose the Cj;, so that diam Cj, < ¢ and

o

diam Cj;, \ "
Z%(W) < A + &
j=1

Then, since A C UCjy,

HNA) < S A + e
k=1

Letting € — 0 gives the desired result. Next, as 6 — 0%, J#" increase. So, it follows from

()
that J#" is a measure.

o
For m > n we want to show that

H(A) <oo = HT(A)=0,
HM(A) >0 = H"(A) =o0.

The critical fact, which follows easily from considering coverings of A C R", is

Ay < 2 (9 .

Wn \ 2

The desired results now follow by letting § — 0.

[oX



o
We want to show that if f : RP—R? is Lipschitz and if A C R? then

A (f(A)) < (Lip f)" #7(A)

If A CUC; then f(A) CUf(C;). Also diam(f(C;)) < (Lip f) diam(C}). Thus,

Tip s (f(A)) < A5 (A).
Letting 6 —0 gives the result.
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